Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.470
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731835

RESUMO

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Assuntos
Leucemia Mieloide Aguda , Biologia de Sistemas , Tretinoína , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Tretinoína/farmacologia , Biologia de Sistemas/métodos , Células HL-60 , Perfilação da Expressão Gênica , Células K562 , Descoberta de Drogas/métodos , Transcriptoma , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
3.
Sci Rep ; 14(1): 11064, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744924

RESUMO

The European Leukemia Net recommendations provide valuable guidance in treatment decisions of patients with acute myeloid leukemia (AML). However, the genetic complexity and heterogeneity of AML are not fully covered, notwithstanding that gene expression analysis is crucial in the risk stratification of AML. The Stellae-123 score, an AI-based model that captures gene expression patterns, has demonstrated robust survival predictions in AML patients across four western-population cohorts. This study aims to evaluate the applicability of Stellae-123 in a Taiwanese cohort. The Stellae-123 model was applied to 304 de novo AML patients diagnosed and treated at the National Taiwan University Hospital. We find that the pretrained (BeatAML-based) model achieved c-indexes of 0.631 and 0.632 for the prediction of overall survival (OS) and relapse-free survival (RFS), respectively. Model retraining within our cohort further improve the cross-validated c-indexes to 0.667 and 0.667 for OS and RFS prediction, respectively. Multivariable analysis identify both pretrained and retrained models as independent prognostic biomarkers. We further show that incorporating age, Stellae-123, and ELN classification remarkably improves risk stratification, revealing c-indices of 0.73 and 0.728 for OS and RFS, respectively. In summary, the Stellae-123 gene expression signature is a valuable prognostic tool for AML patients and model retraining can improve the accuracy and applicability of the model in different populations.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Taiwan/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Prognóstico , Medição de Risco/métodos , Transcriptoma , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Adulto Jovem , Idoso de 80 Anos ou mais , Regulação Leucêmica da Expressão Gênica
4.
Nat Commun ; 15(1): 3681, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693155

RESUMO

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Assuntos
Farmacogenética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Variação Genética , Linhagem Celular Tumoral , Vincristina/uso terapêutico , Vincristina/farmacologia , Polimorfismo de Nucleotídeo Único , Alelos , Cromatina/metabolismo , Cromatina/genética , Transativadores/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
5.
Technol Cancer Res Treat ; 23: 15330338241248576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693824

RESUMO

Background: Acute myeloid leukemia (AML) is a type of blood cancer characterized by excessive growth of immature myeloid cells. Unfortunately, the prognosis of pediatric AML remains unfavorable. It is imperative to further our understanding of the mechanisms underlying leukemogenesis and explore innovative therapeutic approaches to enhance overall disease outcomes for patients with this condition. Methods: Quantitative reverse-transcription PCR was used to quantify the expression levels of microRNA (miR)-133a and miR-135a in 68 samples from 59 pediatric patients with AML. Dual-luciferase reporter transfection assay, Cell Counting Kit-8 assay, and western blot analysis were used to investigate the functions of miR-133a and miR-135a. Results: Our study found that all-trans-retinoic acid (ATRA) promoted the expression of miR-133a and miR-135a in AML cells, inhibited caudal type homeobox 2 (CDX2) expression, and subsequently inhibited the proliferation of AML cells. Additionally, miR-133a and miR-135a were highly expressed in patients with complete remission and those with better survival. Conclusions: miR-133a and miR-135a may play an antioncogenic role in pediatric AML through the ATRA-miRNA133a/135a-CDX2 pathway. They hold promise as potentially favorable prognostic indicators and novel therapeutic targets for pediatric AML.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda , MicroRNAs , Tretinoína , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Biomarcadores Tumorais/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , Prognóstico , Tretinoína/farmacologia , Tretinoína/uso terapêutico
6.
J Cell Mol Med ; 28(9): e18308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683131

RESUMO

Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Células Eritroides , Hemina , Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Proteínas Proto-Oncogênicas c-crk , Humanos , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/efeitos dos fármacos , Células Eritroides/metabolismo , Células Eritroides/efeitos dos fármacos , Células Eritroides/patologia , Células Eritroides/citologia , Eritropoese/genética , Eritropoese/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Hemina/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Proto-Oncogênicas c-crk/genética
7.
Blood Adv ; 8(9): 2193-2206, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38452334

RESUMO

ABSTRACT: In leukemogenesis, genotoxic stress in hematopoietic stem and progenitor cells (HSPCs) drives individual context-dependent programs of malignant transformation. In light of the various differentiation stages of HSPCs based on a recently revised definition using CD150/CD48, our analyses showed that a subpopulation of long-term repopulating HSCs was most susceptible to MLL-ENL-mediated transformation. An analysis of the molecular mechanism identified Bromo-adjacent homology domain and coiled-coil containing 1 (Bahcc1), which encodes a reader molecule of trimethylated histone H3 lysine 27 (H3K27me3), as a candidate gene involved in distinct susceptibility to leukemic transformation. Interestingly, Bahcc1 was previously reported to be highly expressed in acute myeloid leukemia (AML) with an unfavorable prognosis, including some cases of MLL-rearranged AML. We found that MLL-ENL upregulated Bahcc1 through binding to its promoter, and that Bahcc1 was involved in MLL-ENL-mediated immortalization at least partly through repression of H3K27me3-marked Cdkn1c. Analyses using bone marrow transplantation in mice showed that depletion of Bahcc1 suppressed the leukemogenic activity of MLL-ENL. In a public database, high BAHCC1 expression was found to be associated with a poor prognosis in pediatric AML, in which BAHCC1 expression was significantly lower in MLL-AF9-AML than in other MLL-fusion-AML. These findings shed light on the distinct immortalization potential of HSPCs and suggest a novel MLL-fusion-Bahcc1 axis, which may lead to development of molecular targeted therapy against MLL-fusion-mediated leukemia.


Assuntos
Modelos Animais de Doenças , Epigênese Genética , Proteína de Leucina Linfoide-Mieloide , Animais , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Regulação Leucêmica da Expressão Gênica , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
8.
Blood Cancer J ; 14(1): 42, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453907

RESUMO

As key developmental regulators, HOX cluster genes have varied and context-specific roles in normal and malignant hematopoiesis. A complex interaction of transcription factors, epigenetic regulators, long non-coding RNAs and chromatin structural changes orchestrate HOX expression in leukemia cells. In this review we summarize molecular mechanisms underlying HOX regulation in clinical subsets of AML, with a focus on NPM1 mutated (NPM1mut) AML comprising a third of all AML patients. While the leukemia initiating function of the NPM1 mutation is clearly dependent on HOX activity, the favorable treatment responses in these patients with upregulation of HOX cluster genes is a poorly understood paradoxical observation. Recent data confirm FOXM1 as a suppressor of HOX activity and a well-known binding partner of NPM suggesting that FOXM1 inactivation may mediate the effect of cytoplasmic NPM on HOX upregulation. Conversely the residual nuclear fraction of mutant NPM has also been recently shown to have chromatin modifying effects permissive to HOX expression. Recent identification of the menin-MLL interaction as a critical vulnerability of HOX-dependent AML has fueled the development of menin inhibitors that are clinically active in NPM1 and MLL rearranged AML despite inconsistent suppression of the HOX locus. Insights into context-specific regulation of HOX in AML may provide a solid foundation for targeting this common vulnerability across several major AML subtypes.


Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Nucleares/genética , Nucleofosmina , Regulação Leucêmica da Expressão Gênica , Fatores de Transcrição/genética , Cromatina , Expressão Gênica
9.
Leukemia ; 38(5): 981-990, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429501

RESUMO

PICALM: MLLT10 fusion is a rare but recurrent genetic driver in acute leukemias. To better understand the genomic landscape of PICALM::MLLT10 (PM) positive acute leukemia, we performed genomic profiling and gene expression profiling in twenty PM-positive patients, including AML (n = 10), T-ALL/LLy (n = 8), Mixed-phenotype acute leukemia (MPAL), T/B (n = 1) and acute undifferentiated leukemia (AUL) (n = 1). Besides confirming the known activation of HOXA, differential gene expression analysis compared to hematopoietic stem cells demonstrated the enrichment of genes associated with cell proliferation-related pathways and relatively high expression of XPO1 in PM-AML and PM-T-ALL/LLy. Our study also suggested PHF6 disruption as a key cooperating event in PICALM::MLLT10-positive leukemias. In addition, we demonstrated differences in gene expression profiles as well as remarkably different spectra of co-occurring mutations between PM-AML and PM-T-ALL/LLy. Alterations affecting TP53 and NF1, hallmarks of PM-AML, are strongly associated with disease progression and relapse, whereas EZH2 alterations are highly enriched in PM-T-ALL/LLy. This comprehensive genomic and transcriptomic profiling provides insights into the pathogenesis and development of PICALM::MLLT10 positive acute leukemia.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Fusão Oncogênica , Humanos , Proteínas de Fusão Oncogênica/genética , Criança , Adolescente , Masculino , Feminino , Adulto Jovem , Adulto , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Genômica/métodos , Fatores de Transcrição/genética , Pré-Escolar , Biomarcadores Tumorais/genética , Regulação Leucêmica da Expressão Gênica , Prognóstico , Transcriptoma
10.
Leukemia ; 38(5): 991-1002, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454121

RESUMO

MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promoters of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Mutação , Proteínas Proto-Oncogênicas , Proteína 1 Parceira de Translocação de RUNX1 , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Camundongos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Humanos , Proteína 1 Parceira de Translocação de RUNX1/genética , Fatores de Transcrição/genética , Camundongos Knockout , Proliferação de Células , Proteínas de Fusão Oncogênica/genética , Regulação Leucêmica da Expressão Gênica
11.
Mol Biomed ; 5(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163849

RESUMO

Risk classification in pediatric acute myeloid leukemia (P-AML) is crucial for personalizing treatments. Thus, we aimed to establish a risk-stratification tool for P-AML patients and eventually guide individual treatment. A total of 256 P-AML patients with accredited mRNA-seq data from the TARGET database were divided into training and internal validation datasets. A gene-expression-based prognostic score was constructed for overall survival (OS), by using univariate Cox analysis, LASSO regression analysis, Kaplan-Meier (K-M) survival, and multivariate Cox analysis. A P-AML-5G prognostic score bioinformatically derived from expression levels of 5 genes (ZNF775, RNFT1, CRNDE, COL23A1, and TTC38), clustered P-AML patients in training dataset into high-risk group (above optimal cut-off) with shorter OS, and low-risk group (below optimal cut-off) with longer OS (p < 0.0001). Meanwhile, similar results were obtained in internal validation dataset (p = 0.005), combination dataset (p < 0.001), two treatment sub-groups (p < 0.05), intermediate-risk group defined with the Children's Oncology Group (COG) (p < 0.05) and an external Japanese P-AML dataset (p = 0.005). The model was further validated in the COG study AAML1031(p = 0.001), and based on transcriptomic analysis of 943 pediatric patients and 70 normal bone marrow samples from this dataset, two genes in the model demonstrated significant differential expression between the groups [all log2(foldchange) > 3, p < 0.001]. Independent of other prognostic factors, the P-AML-5G groups presented the highest concordance-index values in training dataset, chemo-therapy only treatment subgroups of the training and internal validation datasets, and whole genome-sequencing subgroup of the combined dataset, outperforming two Children's Oncology Group (COG) risk stratification systems, 2022 European LeukemiaNet (ELN) risk classification tool and two leukemic stem cell expression-based models. The 5-gene prognostic model generated by a single assay can further refine the current COG risk stratification system that relies on numerous tests and may have the potential for the risk judgment and identification of the high-risk pediatric AML patients receiving chemo-therapy only treatment.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/tratamento farmacológico , Criança , Prognóstico , Feminino , Masculino , Pré-Escolar , Adolescente , Lactente , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Regulação Leucêmica da Expressão Gênica , Estimativa de Kaplan-Meier , Modelos de Riscos Proporcionais
12.
Artigo em Inglês | MEDLINE | ID: mdl-37470414

RESUMO

Genetic and/or epigenetic alterations in hematopoietic stem cells (HSCs) contribute to leukemia stem cell (LSC) formation. We aimed to identify alterations in the lncRNA expression profile signature of LSCs upon inhibition of PI3K/Akt/mTOR signaling, which provides selective advantages to LSCs. We also aimed to elucidate the potential interaction networks and functions of differentially expressed lncRNAs (DELs). We suppressed PI3K/Akt/mTOR signaling in LSC and HSC cell-lines by specific PI3K/mTOR dual-inhibitor (VS-5584) and confirmed the inhibition by antibody-array. We defined DELs by qRT-PCR. Increased SRA, ZEB2-AS1, antiPeg11, DLX6-AS, SNHG4, and decreased H19, PCGEM1, CAR-Intergenic-10, L1PA16, IGF2AS, and SNHG5 levels (|log2fold-change|>5) were strictly associated with PI3K/Akt/mTOR pathway inhibition in LSC. We performed in silico analyses for DELs. ZEB2-AS1 was found to be specifically expressed in normal bone marrow and predominantly lower in leukemic cell-lines. Three sub-clusters were identified for DELs and they were associated with "abnormality of multiple cell lineages in the bone marrow." DELs were most highly enriched for "glucuronidation" Reactome pathway and "ascorbate and aldarate metabolism" and "inositol phosphate metabolism" KEGG pathways. Transcription factors, MBD4, NANOG, PAX6, RELA, CEBPB, and CEBPA were predicted to be associated with the DEL profile. SRA was predicted to interact with CREB1, RARA, and PPARA. The possible DELs' targets were predicted to form six ontological groups, be highly enriched for phosphoprotein, and be involved in "PPAR signaling pathway" and "ChREBP regulation by carbohydrates and cAMP." These results will help to elucidate the roles of lncRNAs in the mechanisms that provide selective advantages to leukemia stem cells.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , RNA Longo não Codificante , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Neoplásicas/metabolismo , Biologia Computacional
13.
Nat Commun ; 14(1): 7464, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016946

RESUMO

Accumulating evidence indicates that HOXA9 dysregulation is necessary and sufficient for leukemic transformation and maintenance. However, it remains largely unknown how HOXA9, as a homeobox transcriptional factor, binds to noncoding regulatory sequences and controls the downstream genes. Here, we conduct dropout CRISPR screens against 229 HOXA9-bound peaks identified by ChIP-seq. Integrative data analysis identifies reproducible noncoding hits, including those located in the distal enhancer of FLT3 and intron of CDK6. The Cas9-editing and dCas9-KRAB silencing of the HOXA9-bound sites significantly reduce corresponding gene transcription and impair cell proliferation in vitro, and in vivo by transplantation into NSG female mice. In addition, RNA-seq, Q-PCR analysis, chromatin accessibility change, and chromatin conformation evaluation uncover the noncoding regulation mechanism of HOXA9 and its functional downstream genes. In summary, our work improves our understanding of how HOXA9-associated transcription programs reconstruct the regulatory network specifying MLL-r dependency.


Assuntos
Proteínas de Homeodomínio , Leucemia , Feminino , Camundongos , Animais , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Leucemia/genética , Proteínas de Neoplasias/metabolismo , Regulação para Cima , Cromatina , Regulação Leucêmica da Expressão Gênica
15.
Curr Gene Ther ; 23(5): 410-418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37491851

RESUMO

BACKGROUND: DNA hypermethylation plays a critical role in the occurrence and progression of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for onecarbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and progression of AML has not been reported yet. OBJECTIVE: In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tailored treatment for AML patients. METHODS: We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its correlation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used to detect the genomic methylation level in individuals. RESULTS: Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML patients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily overexpressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML patients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3 AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS) in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and frequently accompanied by mutations in DNMT3A and NPM1. CONCLUSION: In conclusion, SXFN3 plays an important role in the progression and hypermethylation in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypomethylating therapy.


Assuntos
Metilação de DNA , Leucemia Mieloide Aguda , Humanos , Metilação de DNA/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Regulação Leucêmica da Expressão Gênica , Prognóstico
16.
Leukemia ; 37(8): 1732-1736, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365294

RESUMO

C-terminal mutation of Nucleophosmin 1 (NPM1C+) was thought to be a primary driving event in acute myeloid leukemia (AML) that reprograms leukemic-associated transcription programs to transform hematopoietic stem and progenitor cells (HSPCs). However, molecular mechanisms underlying NPM1C+-driven leukemogenesis remain elusive. Here, we report that NPM1C+ activates signature HOX genes and reprograms cell cycle regulators by altering CTCF-driven topologically associated domains (TADs). Hematopoietic-specific NPM1C+ knock-in alters TAD topology leading to disrupted regulation of the cell cycle as well as aberrant chromatin accessibility and homeotic gene expression, which results in myeloid differentiation block. Restoration of NPM1 within the nucleus re-establishes differentiation programs by reorganizing TADs critical for myeloid TFs and cell cycle regulators that switch the oncogenic MIZ1/MYC regulatory axis in favor of interacting with coactivator NPM1/p300, and prevents NPM1C+-driven leukemogenesis. In sum, our data reveal that NPM1C+ reshapes CTCF-defined TAD topology to reprogram signature leukemic transcription programs required for cell cycle progression and leukemic transformation.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
17.
Nat Commun ; 14(1): 1330, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899005

RESUMO

Microenvironmental bystander cells are essential for the progression of chronic lymphocytic leukemia (CLL). We have discovered previously that LYN kinase promotes the formation of a microenvironmental niche for CLL. Here we provide mechanistic evidence that LYN regulates the polarization of stromal fibroblasts to support leukemic progression. LYN is overexpressed in fibroblasts of lymph nodes of CLL patients. LYN-deficient stromal cells reduce CLL growth in vivo. LYN-deficient fibroblasts show markedly reduced leukemia feeding capacity in vitro. Multi-omics profiling reveals that LYN regulates the polarization of fibroblasts towards an inflammatory cancer-associated phenotype through modulation of cytokine secretion and extracellular matrix composition. Mechanistically, LYN deletion reduces inflammatory signaling including reduction of c-JUN expression, which in turn augments the expression of Thrombospondin-1, which binds to CD47 thereby impairing CLL viability. Together, our findings suggest that LYN is essential for rewiring fibroblasts towards a leukemia-supportive phenotype.


Assuntos
Leucemia Linfocítica Crônica de Células B , Proteínas Proto-Oncogênicas c-jun , Trombospondinas , Quinases da Família src , Humanos , Fibroblastos/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Leucemia Linfocítica Crônica de Células B/genética , Transdução de Sinais , Quinases da Família src/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Trombospondinas/metabolismo
18.
Theranostics ; 13(1): 77-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593968

RESUMO

Rationale: microRNAs (miRNAs) are frequently deregulated and play important roles in the pathogenesis and progression of acute myeloid leukemia (AML). miR-182 functions as an onco-miRNA or tumor suppressor miRNA in the context of different cancers. However, whether miR-182 affects the self-renewal of leukemia stem cells (LSCs) and normal hematopoietic stem progenitor cells (HSPCs) is unknown. Methods: Bisulfite sequencing was used to analyze the methylation status at pri-miR-182 promoter. Lineage-negative HSPCs were isolated from miR-182 knockout (182KO) and wild-type (182WT) mice to construct MLL-AF9-transformed AML model. The effects of miR-182 depletion on the overall survival and function of LSC were analyzed in this mouse model in vivo. Results: miR-182-5p (miR-182) expression was lower in AML blasts than normal controls (NCs) with hypermethylation observed at putative pri-miR-182 promoter in AML blasts but unmethylation in NCs. Overexpression of miR-182 inhibited proliferation, reduced colony formation, and induced apoptosis in leukemic cells. In addition, depletion of miR-182 accelerated the development and shortened the overall survival (OS) in MLL-AF9-transformed murine AML through increasing LSC frequency and self-renewal ability. Consistently, overexpression of miR-182 attenuated AML development and extended the OS in the murine AML model. Most importantly, miR-182 was likely dispensable for normal hematopoiesis. Mechanistically, we identified BCL2 and HOXA9 as two key targets of miR-182 in this context. Most importantly, AML patients with miR-182 unmethylation had high expression of miR-182 followed by low protein expression of BCL2 and resistance to BCL2 inhibitor venetoclax (Ven) in vitro. Conclusions: Our results suggest that miR-182 is a potential therapeutic target for AML patients through attenuating the self-renewal of LSC but not HSPC. miR-182 promoter methylation could determine the sensitivity of Ven treatment and provide a potential biomarker for it.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , MicroRNAs , Animais , Camundongos , Linhagem Celular Tumoral , DNA , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
19.
Biomark Med ; 17(21): 889-898, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38230972

RESUMO

Background: This study aimed to evaluate the prognostic value of the MTSS1 gene expression in patients with acute leukemia. Patients & methods: MTSS1 gene expression was quantified in 120 newly diagnosed acute leukemia patients, by quantitative reverse transcription PCR at diagnosis and after induction chemotherapy therapy. Results: Baseline MTSS1 gene expression was significantly higher in acute leukemia patients compared to the control group (p < 0.001). Acute leukemia patients with low baseline MTSS1 gene expression at diagnosis have significantly shorter overall survival and disease-free survival compared with those with higher expression (p < 0.001 for both). Conclusion: Downregulation of MTSS1 gene expression at diagnosis was associated with poor outcome in either cytogenetic acute myeloid leukemia or B-cell acute lymphoblastic leukemia.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Doença Aguda , Expressão Gênica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/uso terapêutico , Proteínas de Neoplasias/genética
20.
Nature ; 611(7935): 387-398, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289338

RESUMO

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.


Assuntos
Genoma Humano , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Genoma Humano/genética , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos , Inativação Gênica , Reprodutibilidade dos Testes , Sistemas CRISPR-Cas , Análise de Sequência , DNA (Citosina-5-)-Metiltransferases , Regulação Leucêmica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...